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Abstract. The geometric theory of Lin constraintsand variational principles in
termsof Clebschvariablesproposedrecentlyby CendraandMaisden[1987] will
be genenilizedto include thosesystemsdefinednot only on configurationspaces
which are products of Lie groups and vectorspacesbut on configurationspaces
which are principal bundleswith structuralgroupG. This generalizationincludes,
for example,fluids with free boundaries,Yang-Mills fields,and it will be very
useful,as it will beshownlater, to illustrate someaspectsof thetheoryofparticles
movingin a Yang-Millsfieldin both its variational andHamiltonianaspects.

1. INTRODUCTION

The origin andnecessityof Lin constraintscan beeasily understoodby consi-

deringa LagrangianL definedon the tangentbundleof a trivial principal bundle

B x G, andassumingthat L is invariantundertheactionof thegroupG lifted to

the tangentbundle T(B x G). Thus L definesa LagrangianL’ : TB X g-+ R. One
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discoversthat it is impossible to get the equationsof motion by usinga naive
variational principle associatedto L’, for example,varying curves (x(t), v(t)) on

B x 2 with the usualfixed endpoint condition. For instance,for the rigid body
with G = SO(3) and B a single point, L’ is the usual kinetic energy in body

representationand the naive variational principle for L’ does not give Euler’s

equations.The first methodproposedtoovercomethis difficulty was the <<Clebsch

representation>>technique, which adds more variables,extendingthe spaceof
variables(x, v) andintroducesa new Lagrangiandefinedon the extendedspace,
which will give the correctequationsof motion. Onesuchextensionis to T(B x G)

itself, but thereare othersas well. It is plausible that if we usethe sameideain
the context of configuration spaceswhich are nontrivial principal bundles we

should describeseparatelythe variations along the vertical (<<group>>) directions
and the horizontal(<<base>>)directions,or equivalently wewould haveto choose
a connectionto separatedegreesof freedomalong the fiber directionsfrom the

degreesof freedomalong the basedirections.Obviouslysuch a choicemay have
global consequencesin the descriptionof the reduceddynamicsin the sameway

that the equationsof motion for a particle moving in a Yang-Mills field depends
on the connectionwe choosein the gaugefiber bundle of the system(seeMont-

gomery 119841 and referencestherein).This exampleusing these ideaswill be
discussedin §5. In §2 we describesome notationsand ideasabout principal
and associatedfiber bundles.In §3 we introducethe horizontalLin constraints
anda relatedvariationalprinciple. In §4 we use this variationalprinciple to find
equationsof motion for invariantLagrangians.

2. ASSOCIAThD BUNDLES AND CLEBSCH SPACES

Let ir : P -+ B be a principal bundlewith structuregroupG actingon theright.

Supposep : G x M -+ M is a (left) action of G on a manifold M. Recall that the
associatedbundle with fiber M is P x G M = (P x M)/—.~,where the equivalence

relation ‘—j is defined by (p
1, m1) -~ (p2, m2) if andonly if p1 = p2gand m1=

= p(.g’, m2), for someg E G. The equivalenceclass[(p, m)] will be often written
pm. We have the following commutative diagram,where the meaningof the

arrowsis the obviousone:

proj~ ~L
For eachp E F, the map i, : M -÷ P xGM defined by i~(m)= pm is an embed-

ding. For simplicity, we will write: (pm, pi~’i): = pth :=Tmip(m. m). Likewise
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for eachmEM, we havethemap ‘m :P-÷PxGM, ~m(P)= pm. Also Tlm(P~ji) : =

= (pm, ~
5m) : = jim is a convenientnotation.Thus, if (p(t), m(t)) is a curve in

P x M, the tangentvectorto the curvep(t)m(t) is givenby: Tp~m(f9)+ Tmi~(nz)=

= jim + pth. Given a connectionA on F, a paralleltransportoperationis induced

on P xGM. The horizontal subspaceof TPm(P xGM) is definedto be the sub-
spaceHMpm spannedby tangentvectorsto curvesof the form p(t)m with p(t)

horizontal in P (i.e., A(ji) = 0) and m E M fixed. The horizontal distribution

HM is the kernelof the T(P xGM)-valued 1-form AM definedas follows:

AMpm(Xpm) = Xpm — Xhpm = XVpm

where Xpm E Tpm(P xGM), X~lpm is the horizontal projection of Xpm~and
XUpm is the vertical projectionof Xpm; (i.e. the projectionof the tangentspace
to the fiber ~ (i’)) C P xGM or, in other words, X°pmE VMpm =

= TpmirM’(lr(p)). It is easyto seethat for fixed p, the curvepm(t) is vertical
andalso that thehorizontal componentof

dp(t)m

dt =Xpm

j~
13h(~0)~wherep~~(t)is the horizontal lift of p(t) such that p~~(t0)= p(t0).

More generally,for a given curve (p(t), m(t)) E p x M, the horizontalcomponent
of thetangentvectorXpm is I~’(t0) m(t0). Thus the verticalcomponentof

dp(t)m(t)

dt

is

jim +pth—ji”m =(ji_jih)m +pth =ji~’m+pth

= (pA(ji))m + pth = p(A(ji)m) + pth

where pA(ji) is the infinitesimal generatorof A(ji) E g calculatedat p E F, and

the last equality comes from the formula: (pu)m = p(um) for u E g, which in

turn is the infinitesimal version of the equality (pg)m = p(gm). Thus we
canwrite

(dpm
AML_ = pm + (pA(ji))m = pth + p(A(ji)m)

\ dt

There is a canonicalinclusion P x G TM C T(P x G M). Notice also that AM is

actually P x G TM - valued;in fact bothpm andp(A(p),n) belongto F x G TM.
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3. HORIZONTAL LIN CONSTRAINTS AND VARIATIONAL PRINCIPLES

As in the previoussection, let ir : P -9- B be aprincipal bundlewith structure
group G, andassumethatp : G x M -÷Misa given left action.In addition,assume
that the following conditionis satisfiedfrom now on:

G There is a G-invariant open set U C M such that G is embeddedinto its orbit

Gin for eachm E U.

Theassumptionthat Uis openshould be properlyinterpretedin eachexample,

especiallyin infinite dimensionalcases.This involvesissuesof functional analysis

that we will not detail here.The point to keep in mind is that U should allow

enough variations of curves to apply the usualvariational techniques.Similarly,

the assertionthat G is embeddedonto its orbit shouldbeproperlyinterpretedin
examples.In a numberof examples,wecanchooseU to be G itself. To handle

the notations about variational principles on nontrivial principal bundles that

appearin the statementof the main result of this section,we introduce some

notation.

We will be dealingwith severalspacesof curves. A curve in P will be generally
denotedp: [t

0 , t~]-÷F,while fixed pointson Pwill be denotedp0,p1 , p2, . . . etc.

Thus, the condition p(t0) = p0, meansthat the left endpoint of the curve p is

and the condition p(t1) = p1 meansthat the right endpointof the curvep is
p1. The condition for curves of having fixed endpointsare of common use in

variational techniques;for instance,in Hamilton’s VariationalPrinciple,variations
areallowed suchthat ~p(t0) = 0, ~p(t1) = 0. More precisely,if p(t) is a given

curve in P satisfyingp(t1) = p1, i = 1, 2 a variation of thecurvep is aC” family

of curvesp(t, A) such that p(t, 0) = p(t), and the condition öp(t1) = 0, i = 0, 1,
correspondsto p(t1, A) = p~,for i = 0, 2 andall A. The following notationwill be
usefulin therestof thispaper.Forp0,p1 E F, define

cl(p;p0)={p:[t0,t1]_*p~p(t0)=p0}

~Z(P;p0,p1)={p :[to,ti]-+PIp(t0)=p0,p(t1)=p1}.

Likewise,for fixed m0,m1EM, define

~2(M; m0) = {in : [t0, t1] -÷M m(t0) = m0}.

and

~2(M; ,i~ , ni1) = {in : [t0 , t1] -÷MIin(t~)= m1, i = 0, 1 }

Forp0 E P and E B, define
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fZ(P;p
0,x1)={p:[t0,ti]-9-PIp(to)=po, 7r(p(t0))rrx1}.

In other words, &~(P;p0, x1) is the manifold of all curvesp having fixed left
endpoint p0 and also having the right endpoint <<vertically free>>, which means
that only the projection of the right endpoint is fixed to bex1 EB. For instance
if P = B x G is a trivial bundleandp0 = (x0,g0) EP andx1 E B are fixed, curves

p(t) belongingto ~(P; p0, x1) are of the type p(t) = (x(t), g(t)), whereg(t0) = g0

andx(t1) = x~,i= 0,1.

Fix a connectionA on the principal bundleP. Thenwe havethenotion of ho-

rizontality for curvesp, with respectto the connectionA. Given any curvex(t)

on B, such that x(t0) = x0, thereis a unique <<horizontallift>> of x(t), say p(t),

such that p(t0) = p0 , andlr(p(t)) = x(t) for all t E [t0, t1]. Observethat if x(t1) =

= x1, then the curvep(t) belongsto f~(P;p0, x1). Thus, givenany curvep E &Z(P;

p0) there is a unique decompositionp(t) = p~(t). gP(t), wherep’~(t)is a hori-
zontal curve on P satisfyingp

1’ (t
0) = p0 andgP(t) is a curve on G satisfying

gP(t0) = e. In fact, p~(t)is the horizontal lifting of lr(p(t)) = x(t), havingleft

endpointp0. Another usefulnotation is the following. Let p E ~2(P;p0, x1) and

m0E M be given.Thenthereis a uniquecurve m~(t) belongingto ~Z(M; in0) such

that p(t)mP(t) is horizontalandp(t0)m~(t0)= p0m0.This curve is definedby

m~(t)= [gP(t)~’m0.

In fact,we have

p(t)m
1’(t) = p’(t)[gp(t)]~ 1m

0= ph(t),fl

which provesthat p(t) m~(t)is horizontal, as a curve on P XG M, andon the

otherhandit is also easyto seethatp(t0)mP(t0) = p0m0. AssumptionG implies

that if in0 E U andnil’ is definedasbefore, thenm~(t)E U for all t E [t0, t1].

With p0, p1 E P, ir(p1) = E B, and in0 EM fixed, define the functions

fl(P; p0, x1) -+ U by m1(p)=

and

g1 :~(P;p0,x1)-+G by ph(~1)pg1(p)

These definitions make sensesince both phl(t1) and p1 lie over the samebase

point x1. Notice especiallythat while thesetwo mapsare definedon thespaceof

curves with right hand endpoint over the basepoint x1, the mapsthemselves

dependon the choice of p1. To getan intuitive picture of thepreviousnotions,
let us explicitly describethem for the caseof a trivial bundleP = B x G with A

the trivial connection;i.e. horizontal curveson P have the form p(t) = (x(t), g0)
whereg0 E G is independentof I. Given p0 = (x0, g0), p1 = (x1, g1), m0 E M

and a curve p E &2(P; p0, x1), say p(t) = (x(t), g(t)), we can give formulasfor
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~h gP, ml’, m
1 : ~l(P; p0, x1)-÷U andg1 : fl(P; p0, x1) -4 G as follows. First

observethat we haveP XG M B x M via [(x, g), m] ‘-~ (x, gm). This implies
that horizontal curves on P XG M areof the form (x(t), m0), wherem0 E M is

independentof t. Thenwe have

ph(t) = (x(t), g0), gP(t) = [g01’g(t),

m~(t)= [g(t)]’g0m0 and m1(p)= [g1]~g0m0

whereg1 E G is thesecondcomponentof p1 = (x1 , g~)which was given.(Thereis

a slight abuseof notation, sinceg1 is also used to denotea function ~Z(P;p0,

x1)-* G). This canbecheckedasfollows.-Fromthedefinition wehave:p1m1(p)=

= ph(t1)m0 Since p1m1(p) = (x1, g1m1(p))andp’~(t1)m0= (x1 , g0m0) we

concludethat m1(p)= [g1]~g0m0. For the particular caseof a trivial connection
m1(p)only dependson the givenvaluesof p0 andp1 andit is really independent

of the curvep. The meaningof this will becomeclearerlater on. This is not the
casefor anontrivial connection.Finally wehave

g1(p)= [g1]~g0

which shows that for a trivial connection,g1(p) is a constanti.e. doesnot depend

on p andonly dependson the fixed valuesof p0 , p1.
In the caseof a generalbundlePand a generalconnectionA, we cancheckas

an easyconsequenceof thedefinitions that

m1(p)= g1(p)m0.

The purposeof the previousdefinitionsis thefollowing lemma.

LEMMA 3.1. Letp0,p1EPandm0E Ubegiven:
(a) If p E ~‘L(P;p0, x1), m E ~cZ(U,m0, m1(p)) and p(t)m(t) is horizontal, then

p(t1)=p1 .(Recall that m1 dependson thechoiceof thepointp1).

(b) Conversely,givenp E ~2(P;p0, p1), there is a unique m E ~ m0,m1(p))
suchthat pm is horizontal; in fact m = m~satisfiesthis requirement.

Before giving the proof, we comment on the meaning of this lemma in the
particular caseof a trivial bundle with a trivial connection.Givenp(t) = (x(t),

g(t)), and m(t), the condition of horizontality for p(t)m(t) = (x(t), g(t)m(t))

meanssimply that g(t)m(t) = g(t0) is independentof t. Thus if p(t0) = (x0 ,g0),
m(t0) = m0 andp(t)m(t) is horizontal theng(t1)m(t1)= g0in0. Sincewe arealso

assumingthat m(t1) = m1(p) = [g1]~g0m0 accordingto the previousdiscussion,
we getg(t1) [g1]~g0ni0 = g0in0, and sincem0 E U, conditionG togetherwith
the previousequality implies g(t1) = g1 , and since,by assumption,x(t1) = x1,
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we getp(t1) = (x(t1),g(t1)) = (x1 , g1) = p1, which provespart (a)of thelemma

in the particular case of a trivial connection. Part (b) can be proved in a

similar way.
The essentialcontent of the lemma,in thecaseof atrivial connection,consists

of the assertionthat g(t)m(t) = constant(horizontality) and m(t1) = constE U

(i.e. m(t1) = m1(p))togetherimply that g(t1) is also a constant.In thenontrivial

casehowever, difficulties arisepreciselybecausem1(p) is not constant(indepen-

dent of p), and could not possibility be chosento bea constant,andit is interest-

ing thatnevertheless,the lemma,as statedis still valid.

Proofof Lemma3.1. Let us prove the following equivalences,whicharevalid for

curvesm E ~Z(U,m0),p E fl(P; p0, x1)asbeforeandp0, p1 , m0 are fixed.

p1 =p(t1)’l=’=’ [g1(p)]
1 —gP(t

1).~~i~mP(t1)= m1(p).

In fact, we have

p1 = p(t1) ~ ph(t1)[g1(p)1_ 1 = ph(t1~P(t1) .~ [g1(p)J
1 gP(t

1)

wherethe last equivalencecomesfrom the fact that the action of G on P is free.

On the other hand, using formulas before the lemma and Assumption G we

concludethat

mP(t1)=m1(p).~==~’[g1(p)J
1 gP(t

1).

Usingthesefactswe canprovethe lemmaasfollows

pm horizontal and m(t1) = m1(p) ~ m = m~andm(t1)= m1(p)

mP(t1)= m1(p)~p1 = p(t1).

Conversely,let p E fl(P; p0 , p1)be given.Thenp(t1) = p1 andthereforemP(t1)=
= m1(p). Thus if we choosem = ml’, thenpm is horizontal and m E ~2(U;m0,

m1(p)). •

We can write the previouslemmain a morecompactform as follows. Recalling

that m1 dependsimplicitly on the choice of p1, and we let x1 = ir(p1), define

the sets

~l(P x M; p0,p1, m0) = ~(p, m) : [t0, t1} -+ Px MI p(t0) = p0,

lr(p(t1)) = x1, m(t0) = m0,m(t1) = m1(p)}

and f2
11(P x M; p

0, p1, m0) the subsetof horizontal curves,i.e. curvessatisfying
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dpm
AM__ =0.

dt

Thenwe havethe following rewordingof lemma3.1.

COROLLARY 3.2. The map

defined by (p, m) p, is an isomorphism onto. The inverse is given by

p —* (p, ml’).

The main purpose of this section is to introducethe horizontal constraint
given by

dpm
AM__ =0

dt

via a Lagrangemultiplier to geta variationalprincipleinvolving Clebschpotentials

andthe variablev =A(p) as quantities to be varied independently. We represent

by (m, a) or, sometimes,simply a = am an elementof T~M. Thus elementsof
P XG T*M will be denotedsimply pam = pa (the action of G on T*M is the
cotangentlifting of p).Wehavea naturalpairing:

(,):PxG TMDPxG T*M~#R

where ~ standsfor the Whitney sum over the basisP x G M. We define <,) by the

formula: (pth, pa,) = <iii, a) and we can check that this is well defined. It is
sometimesuseful to work with a canonical trivialization of T*M sayM’ x F*,
whereM1 C M is openandF is isomorphicto the tangentspacetoM atsomepoint

belonging to M’. Thus for given (m, a) belonging to this trivialization, we can

interpretm as beingan elementof M’ anda as being an elementof F*. We still

needsomemore notation to be usedin thefollowing theorem.As before,assume

p
0, p1 E Parefixed, x1 = ir(p1) andm0 EM is fixed. Define

x T*U; p0, p1, m0) = {(p;m, a): [t0,t11-+Px T*UI p(t0) =p0,

~r(p(t1)) = x1, m(t0)= m0,m(t1)= m1(p)}.

Notice that for eachgivencurve p on P satisfyingp(t0) = p0 andir(p(t1)) = x1,
the point ;n1(p) remainsfixed. Now chooseany curve in on M satisfyingm(t0) =

= in0 and m(t1) = iii1(p). Finally, choosethe curve (m, a) on T*M arbitrarily,

except that the componentm satisfiesthe previousendpoint conditions.Then

(p; in, a) is a typical elementof ~l(P x T*U; p0, p1, m0). Notice that thepoint
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p1 is implicit in the definition of m1. The horizontal constrainton curves(p, in),

i.e.,the conditionthatpm behorizontal,is equivalentto

d dpm
_(AM~,a) =0
dX dt >‘

for all variationsa~of the curve a. Arbitrarily variations(p, m, a~)of the curve
(p, m, a) are allowed in the manifold of curves~l(P x T*U; p0, p1, m0) as we

sawbefore.

SinceAM is P XG TM-valued,we canwrite

dpm

KAM(__),Pa)=(pm + p~A(ji)in),pa)= (in + vm,a)

= O(a)(&) +(J(a), u).

Here urn = um(in) standsfor the infinitesimal generatorof v = A (p) calculatedat
rn, U is the canonical 1-form on T*M and J is themomentummapping of the

actionof G on T*M.
Let L : TP -+ R be a given Lagrangian.DefineLM : TP x TT*M —~ R by

d(pm)
LM(p,ji;m,a,th,&)=L(p, ~)+(AM

dt

Usingpreviousformulaswe have

LM(p, j3; rn, a, th, &) = L(p, ji) +çpth + p~urn,pa)

=L(p,ji)+(th + um,a)

= L(p, ji) + O(rn, a)(th, &) +(J(m,a), v,).

THEOREM 33. Let p0,p1 EPandrn0 E Ube given. Then the following assertions

are equivalent.

(i)The curve p E ~Z(P; p0, p1) is a critical point of the functional S : ~l(P; p0,

p1)-# R definedby

It’
S(p)=} L(p,ji)dt

to

(ii) There is a curve (in, a) E 1’Z(T*U; in0, m1(p)) such that the curve(p; m, a)
is a critical point of thefunctional 5M : fl(P x T*U; p0,p1 , m0)—* R defined

by
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It
1

SM(p, in, a) =J LM(p, ji, m,a, th, &) dt.

to

Proof This will be a typical Lagrangemultiplier argument, basedon the fol-

lowing versionof the

Lagrange Multiplier Theorem: Let E be a manifold, h : E -+ R a function and

E’ C Ea constraintsubmanifolddefinedby an equationp = 0, where p : E -+F, F
a vector spaceand 0 is a regular value of p. Then, for e0 E E’, thefollowing

assertionsareequivalent:

(i) e0 isa critical point ofh restrictedtoE’.

(ii) There existsa0 E F* such that (e0, a0) is a critical point of the function

,X”(e, a) = h(e)+ ((p(e),a>.

In ourcase,we take

ft1

E:=12(PxM;p0,p1,m0)andh(p,rn):=j L(p,ji)dt=:S(p)

Ito

which, accidentally,is independentof m, and

E’ :=&~“(PxM,p0,p1,rn0).

Accordingto Corollary 3.2 we can write E’ fMP,~p0, p1). By working in a local

chartof U we can assumeTU = U x H where H is a vector spaceisomorphic to

the tangent spaceat a point of U, and therefore T*U = U x H*. Define F =

= ~2(H) ={a : ~~0’ t1J —~- H}andF* = &~(H*)={a : [t0, t1] —9-H}. Define the

pairing

(ti

KKa, a,)) = J (~a(t),a(t)) dt

to

where(a(t), a(t)) is the canonicalpairingbetweenH andH*. Define the constraint

function (p : E ~ F by p(p, m) = th + urn. Recall that ,h beingthederivativeof

in E ~(H) can also be interpreted as a curve belonging to &l(H), since h is a

vector space. Also recall that u(t)m(t) is, for each t, the infinitesimal generatorof

v(t) at in(t), which can be identified with an elementof the vector spaceH. Thus

it makessenseto form thepairing

tI

(.(th + urn,a)) =J (m + urn, a> dt

to
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as before.

From the previousremarkswe concludethat wecantake)~°(p;m, a) = SM(p;
m, a) and therefore,the assertionof our theoremfollows from the Lagrange

Multipler Theorem.[However, it shouldbe mentioned that theusualversionsof
LagrangeMultipler theorem that appearin the literatureare not strongenough

to be applied directly in the way we describedbefore, to manycasesof physical

interest. We claim, however, that the result remainsvalid in all thoseexamples,

and the proof can be performedby first localizing and thenapplying the same
methodas we did in an earlierpaper(see CendraandMarsden [1987]). We omit

thedetailshere].

4. EQUATIONSOF MOTION

We will call L : TP -~ R an invariant Lagrangian if the following conditionis

satisfied:L(pg, jg) = L(p, ~) for all (p. j3) E T~Pandg E G, wherethenotation

<<(pg. jg)>> standsfor thetangentlifting of the actionof G on P. Weassume,from
now on, thatL is aninvariantLagrangian.

First of all, recall that any given connectionA on P gives rise to a decompo-

sition of TP into a <<horizontal>> part and a <<vertical>> part. This is related to
Montomery [1986], where the cotangentversionof theseideashavebeenstudied
in connectionwith the Hamiltonian (rather than Lagrangian)descriptionof a

systemon a principalbundle.Examplessuchas free boundaryfluidsandparticles
in Yang-Mills field which were studiedin Montgomery’swork, canalso bestudied
from the Lagrangianpoint of view, using the methodsof the presentarticle.

The decompositionof TP is given by anisomorphism

0 : TP -~ THPx

definedby Ø(p, j5) = (p. fi”, u) = : (H(p, fr), A(p, p)). The notationH(p, j~)=
= (p, ~H) standsfor the horizontal componentof (p, j) E T~P.ThusH : TP-+

THP is, by definition, an onto map.ObservethatH canbeexpressedin terms
of A as follows: H(p, j’) = (p, ~) — pA(p, i’). Theinverseof 0 isgiven by çb

1(p,

~,H ~ = (p, ~H + pu), where,as we usually do in this paper,pv = u~(p)isthe
infinitesimalgeneratorof v calculatedat p E P. The actionof G on TP, which is
thetangentlifting of theactionof G on F, becomes

(p ~H, u)g = (pg. j5~1g,Adg..,iu).

With some abuseof notation we can write L = L o 0, in otherwords,we shall

write L(p, j5)= L(H(p, ji),A(p, p5)). Thusinvarianceof L is expressedby

L(p, ~ u) = L(pg, ~3’1g,Ad
5~1u).
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SinceL is invariant, it definesa function on THP xG g, wheretheactionof G on

g is the adjointaction.The main purposeof this sectionis to get equationsof

motion on T”P XG g x T*M from the vanationalprinciple describedin the
previous section. The curvatureof the connectionA will appearin a natural

way as a term representinga field strength,which seemsnaturalin view of the

case of a particle in Yang-Mills field. This will be done using a descriptionof
THP xG g as avector bundleover TB with fiber isomorphicto g, which resembles
a similar descriptionfor the cotangentcasegiven in Montgomery[1986]. A local

trivialization X x G of Pgivesrise to a local trivialization TX x g of T”P xG 9 and
thereforeour lagrangianLM, locally, is a functionLM : TX x g x T*M -~ R and
thefunctionalSM becomes,locally, atunction

SM : f~(X;x0, x1) x fZ(g) x ~Z(T*M; m0,m1(p)) -~ R.

The curve p that appearsin m1(p) is determinedby the curve (x, v) in fl(X; x0,
x1) x ~

2(g),asfollows: Solve u = A(x, i, g, ~), g(r
0) = e, which gives a solution

g(t). Find the horizontallift x~!(t) of x(t) suchthatx’ (t0) = p0.which is a curve
in ~2(F;p0, x1). Thenset pa’) = x~’(t)g(t). The function m1 was definedbefore.

In otherwords,a typical elementof

£~(X;x0, x1) x ~(g) x f~(T*M;rn0, m1(p))

canbe describedasfollows. Choose

(x. v)E,Q(X;x0,x1)x ~Z(g)

arbitrarily. Then find p and m1(p) as we did before. Finally choosea curve

(m(t), a(t)) on 12(T*M; rn0, in 1(p)), i.e. a curvesuch that m(t0) = m0,m(t1) =

= rn1(p) with a(t) arbitrary.Then(x, u, rn, a) is a typical elementof thatspaceof

curves.The ideais now to apply theusual variationaltechniquesandnotice that
arbitraryvariationsof the curvex with fixed endpoints,arbitraryvariationsof u

and arbitrary variationsof (m, a) with conditionsm(t0) = m0, rn(t1) = rn1(p)

areallowed. We will postponegiving a detaileddescriptionof theequationsthat

weget by this procedureuntil theendof this section.
The next step consistsof finding critical pointsof the functionalSM, which

accordingto Theorem3.3 is equivalentto finding critical pointsof thefunctional

S(which in turn, is the typical functionalof theHamiltonVariationalprinciple).
First of all let us introduce somenotation. Recall the decomposition(see §3)

p(t) = p~~(t)gP(t),wherepit(t) is horizontalandp’(t0) = p(t0) = p0. Then we

have A(p, 5) = A(p”g”, 13hgP + ph1P) = A(phgP,phgP(gP)_l~P)u,whefe

u= (gP)~~PEfl(g).
It is usefulto keep in mind that, sincefor given p0 E P andp E £2(P:p0), the

abovedecompositionis unique,sowe haveanisomorphism&l(P; p0)—~ &~l~’(P,p0) x
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x ~2(~) givenby p ‘-~ (p’s, A(p, p3)) where~H(p. p
0) = {p E ~2(F;p0)~p ishori-

zontal}. The inverseis constructedas follows: given v E ~Z(g), find g E ~(G; e)

suchthat ~ = gu. (This amountsto solving a time dependentordinarydifferential
equationon G). Thus p = p~gis the inverseimage of the curve (pil, u). Also
observethat ~Z

11(P;p
0) ~2(B;x0), sincethemap p

1’ ‘-÷~(~~h) : = ~ o ~h is an
isomorphism.

Now we applyvariationsto curves in ~lPx T*U, p
0 , p1 , m0)to getequations

of motion,accordingto Theorem3.3. From now on << >> will be used to denote
derivativeswith respectto the variable t only, andwe will sometimesusea nota-

tion of type ~p, ~u, etc. to denotederivativeswith respectto the parameterX.
An arbitrary vertical variation of the curve p, compatiblewith the endpoint

conditionsp(t0) = p0 and lr(p(t1)) = x1, can berepresentedbyp~= pg~,where

E ~2(G;e)is arbitary.Thus u~= (g~)~
1j>~is an arbitraryvariationof v: = g

in ~2(9).Wehave

dpg~\ dpg~
L H —), A(_-_~_))=L(H(fig>, + pE~)+ A(~g~,+ pE~))

=L((pg~+fr”g~),(AdgiA(p,~)+ ui)).

Becauseof the invarianceof L, the last expressionbecomesL(p, ~ u + u~)

where v = A(p, ~3)and u~= i~jg~)~1.Observethat u~alsorepresentsan arbitra-

ry variationof u. Thuswehave

aL(p~,,~’,u~) — aL(p~,,~~)

ax ax

8u~ = ~ (p, ~ u)K__~)~ = — (p,j’~,v)Köu)
where

or’
Variations ~ m, a), wherep~= pg~are compatiblewith the impositionof

the constraint~Z(Px T*U; p
0, p1,m0). This is because,accordingto the defini-

tion of rn1,

rn1(~)= i~_l[p>,~l(t1)rn0]= i~
1[p”(t

0)m0]

which doesnot dependon x andthereforewe canassumethat (mx, a~)is inde-

pendentof x. Thenwehave

a
— Kth + v~,m,a)l~=J(rn, a)(5u)
ax
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where

au~
—

ax

Since LM(p, ~ ~ th a, ~) = L(p
1, 13H v) + (th + u~m,a). We can conclude

that verticalvariationsof thecurvep, leadto theequation

aL
— (p, ,,H u) = — J(m, a). (op)V

au

Letp1 bea horizontalvariationof thecurvep, with fixed endpoints,i.e., for each

t, p~jt) p(A, t) is a horizontalcurve andp1(t1) = p(t1), i = 0, 1. Choose,for
each x, the curve so that p1m1 is horizontal. According to §3 this can

be always achievedin a unique way, by taking m1 = rn
1’x. This implies that

LM(p
1 ,~ m,th, a,a) = L(p1,~3~)andthereforeweshouldonly study

a ~~LL(p1,~1)dt~.

By theusualintegrationby partsargument,weget theequation

aL d aL
— (p, ))— — — (p, j5) (~p)~=0
ap dt ap

for all horizontalvectors

ap
— .(~p)HatpEP
ax

While the equations(op)’
1 appearformally like Euler-Lagrangeequations,they

are not unlessthe distribution of horizontal planesin P is integrable,i.e., the
connectionA is a trivial connection.

One of our purposesis to give anotherexpressionfor equation(Op)”. which
involves thecurvatureof the connectionA. This will be doneat theendof this
section.

Next we considervariations (rn
1, a1) of the curve (in, a) satisfyingthe fixed

endpoint condition rn(t0) = rn0, m(t1) = m1(p), so variations(p. m1, o~)are
compatiblewith the constraint~1~(Px T*U; p0, m1, rn0). To simplify notation,

we will write ‘y = (rn, a) and we will assumethat the variation = (rn~,,a1)

satisfiesthe fixed endpoint condition O’y(t1) = 0, i = 0, 1, which is compatible
with the previous constraint. Since 0 is the canonical 1-form on T*M and
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= — dO is the canonicalsymplecticform on T*M we cancheck(seefor instan-

ce CendraandMarsden[1987]) that

[11 ft
1

&} oe.~)dt=) w(~,O7)dt. (07)

to to

As we explainedbefore, 0~standsfor the derivativeof ~ with respect to X, and

‘~ is the derivativeof 7 with respectto t. From the definition of the momentum
mapping,we know that J(u)(y) = (J(y), u) is theHamiltonianof theinfinitesimal
generatorof the action of G on T*M correspondingto u E ~. Thus we have

ft1 ftloJ J(yXu) dt = J [dJ(uX7XO’y)] dt

to to

It1

to

Sincec.o is nondegenerate,equation(67) is equivalentto

(&‘y)’

which representsthe ‘<Lin Constrainta.Let ussummarizethe equationsof motion
thatwehaveobtainedsofar for convenience:

aL
— (p,~’1,v).~J(7)
at,
~L d aL
— — — — ((Op)”) = 0 (Op)”
ap dt a~

for all horizontalvectors(Op)” at p ePand

‘y+u’y=O. (67)

Now we give an interestingexpressionfor equation(Op)” which involves the

curvatureof the connectionA. This will be doneby first choosinga local trivia-

lization of F, sayX x G where X is an openset containedin B. Thus we havean

isomorphism: T(X x G) TX x G x g given by (x, ~, g, ~) i—p (x, ~, g, A(x, ~,
g, ~)) : = (x, ~, g, u). [Warning: vectorsof the form (x, ~, g, 0) are notnecessarily

horizontal, while vectors (x, 0, g, 1) are always vertical, with respect to the

connectionA]. The action of G on TX x G x ~ inducedby this trivialization
now becomes (x, ~, g, u)h = (x, .~, gh, Adh_ u). Therefore we can write
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TX x G x g/G TX x g, andthe canonicalprojection TX x G x g -~ TX x g is

given by (x, ~, g, u) ~ (x, ~, Adgu).SinceL is invariant, it inducesafunctionL’
on TX x g given by

L’(x, .~, v) = L(x, ~, e, u) = L(x, ~, g, Adgj u) whereu=A(p, ~).

Now we are ready to study equations (Op)”. As before, choosevariations

p1(t) of the curve p(t) = p0(t) suchthat, for eacht, p1(t) is a horizontalcurve

with p1 (t1) is fixed for i = 0, 1. Choosem1 = m’x, so that

d(p1m1)
AM =0, forallt,X.

dt

Denotingv1 (t) = A(p1 (t), p1(t)), wehave

d d (tl

— SM(p1m1,a1) = —j L’(x1,.*1,Ad5A(p1,i1))dt

to 1=0

~1 ~ d aL’ ~L’ 8
= I [(_— — ~)~Ox) +(— — Ad
j a~ dt ax au ax g1
to 10

SinceA(p, ji’) is linear in ~, write A(p,~) = A(p)~.Thenwehave

(~1av a (tl ~L
1 aA(p

1)~51

~ ~ Adg1A(P1)~x)~ dt =~/~0~ ~Adg0 ax )~dt

~1 A(p0)~0)~ dt= :C+D. (CD)

Setg0 = g, p0 = p for simplicity. Thenthe integral C definedby the equation

(CD) is given by

ft1 aL’ aA(p1)p1

C=I —oAd dt
) 8u g ax
to

ft1 aL’ aA ap ap a
2p

=~ —oAd — —,—+A(p
1)———— dt

J 8u ap ax at axat —

1—0
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f~18L’ 8A ap ap 8A a~ ap
=1 —oAd—) a~ a, ax 8t ~ 8t ax

to

d aL’ ap
— — — oAd A(p1)— dt,

dt au g ax
where thelast equality comesfrom integratingby parts.Sincethe derivativeof p

with respectto x is horizontalwehave

ap
A(p1) — = 0.

This and the CartanStructureequationgives

8A ap 8p 8A ap 8p ap ap 1~ ap /8p
— —,— —— —,—=dA—,— =—IA—,Al—
8p ax at ap at ax ax 8t 2 L ax \at

ap ap ap ap
,—

ax at ax at

wherefl is thecurvatureform of the connectionA. Thusif we set

1
8P ~r

c=—(Ad~zi—,—)
au g ~ax at

We have

It’

C=) cdt.

to

On theotherhand,if weset

8g
1(t)

w (t) = [g(t)] 1 _______
ax

we canreadilycheckthat

aL’ a 8L’ a

d:= ~ (~ Adg1A(P)~)~ = —(_ Ad5[w’,u])

andtherefore
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D=fddt.

We can give c and d a more symmetric expressionas follows. Since p(X, t) =

=(x(x, t), g(X, t)), we can write p = qh where h(x, 1) = [g(t)]’g(x, r), giving
h(0, t) = e andq(X, t) = (x~A,t),g(t)). Thus

A— =A =A— +A(p(—w’))=—w’
ax ax 1=0 ax

because— w’ = ah—1/ax ~ andusingthefact that dp/dx is horizontal Since
p(O, t) = q(0, t), wehave

8L’ ~ aq aq
d = — Ad IA — ,A —

8u g[ at ax
Wecanalsocheckthat

aL’ 8q 8q
c=—Ad~— —.

g at ax
Finally, we can show that c andd are invariantunderthe actionof G andthere-

fore they definefunctions c’(x, ~, Ox, u) and d’(x, ~, Ox, u), whereas usualOx
standsfor the derivative of x(x, t) with respectto x. The usualvariationaltechni-
ques,starting with equation(CD), equation(Op)” becomes

8L’ d aL’
— — — — = —(c’(x, ~, ., u)+d’(x, ~, .,u)).
ax dt ax

To find an explicit expressionfor the equationsof notion, we first calculatec’,

d’. Introducethe notion s : = ~g1 for convenience.We can check that for a
given elements E g wehaves= A(x, 0, e,s) withA’(x, ~) : = A(x, ~, e, 0). Thus,

~

= Ad
5_1A (X, ~, e, 0) + Adg_1~g~

1=Adg_iAl(x~1) + Ad
5_,s.

Also, sinceu = AdgU~we haveu = A’(x, !~)+ s. Thenwe have

I 8q\ aq\~ ft aq
Ad IA —I,A —11=1 IA —g

1 ,A— g1
‘L 8t1 axij ft

[ 8x 8g\ 8x
=IA x, — , g, —~g1,Ax, — ,g, 0)g1L at 8t1 ax i
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[ 8x 8g / ax
=~Ax,—,e,—g~,A~x,—,e,0

L at at ‘ ax

F ax
=IA x, — , e, 0 +A(x, 0,e,s),A x, — ,e,0[ at ax

F
=Iu,A’x, —[ ax

Therefore,

aL’
d’(x,i~,Ox,u)=— [u,A’(x,Ox)].

au

Now define~2’(x,~, Ox) : = ~M,(x,~, e, 0), (x, Ox, e, 0)). Hence

aq 8q aq
=~—g1,—g~

g ax at 1=0 ax at 1=0

8x ag ax 8g
= ~ x, — g, — , x, — ,g, —ax ax at at

ii ax ag ax ag
=f~~~Ix,_e,_g1,x,___,e,_g_1

\\ ax ax at at

8x ag
= ~ x, — , —

ax ax

because~ is a tensorial form and(x, 0, e, (ag/ax)g’)and (x, 0, e, (ag/at)g—’)
areverticalvectors.Thenwehave

aL’
c’(x, i, Ox, u) = — fZ’(x, Os, ~).

So far we haveprovedthat equation(Op)11 becomes

aL’ d aL’ aL’
— — — — = — (~2’(x,i, .)+[A(x,.),u]).
8x dt 81 8u

Equation(07) canbe written as follows

~‘ + u’y = 0~=~g~+~7—Ég’g7+gug 1g7 = 0.

Setting3= g~,andusingtheprecedingequivalence,we have
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~~+V7 0c=~’/3+uf3—sf3= 0~==1.13+A’(x, x)13= 0.

In other words,equation (07) is equivalenttoj3 + A’(x, 1)j3 = 0. Finally equa-

tion (Op)t’ was

—

av

Sinceu = Ad
5v, we have

aL aL’
— = — oAd,
av au

Consequently(Op)” is equivalentto

— =—J(f3).
au

Collectingtheseresults,our main equationsof motion become

— =—J($) (
0p)’)au

8L’ d aL’ 8L’
— — — — = — (~2’(x,1, .)+ [A’(x, 1),u]) (Op)”
8x dt a* au

(07)

where

A’(x, 1) = A(x, 1, e, 0),

~l’(x, 1, Ox)= fZ((x, 1, e, 0), (x, Ox, e, 0)),

and

L’(x, 1, u) = L(x, 1, e, u).

If we find a solution curve say (x(t), u(t), 13(t)) to the main equations,then we
canalso find g(t) by solving theequation

Ad
5A(x, 1, g, ~)= u.

In this way we can reconstruct the motion on P using p(t) = (x(t), g(t)) and

7(t) = 13(t)[~g(t)]
1. Once the local trivialization X x G of P and the connection

A havebeenchosen,then we can write A’, il’, L’ and the equationsof motion,
without anyfurther calculation,by usingtheaboveexpressions.
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Remarks1. If the LagrangianL’ has the stronger invarianceproperty given by

the condition L’(x, 1, u) = L’(x, 1, Ad5U) for all g E G, (this happensin the
exampleof particlesin a Yang-Mills field as a consequenceof the bi-invariance

of themetric definedon thegroup), thenwehave

dL a d
d = — (— Ad A(p)i) = — L’(x, 1, Ad A(p),ñ) = 0.

8u ax g1 dx —
1=0 1—0

In this casetheequationsof motion become

dL’
— =—J(B)
au

aL’ d ~L’ aL’
—=—S~’(x,1,.)

ax dt ai au

(3+A’(x,1)(3= 0.

2. Let L : TP -+ R be an invariant Lagrangian(not necessarilybi-invariantas
it was in remark 1). Choosea local trivialization X x G of P as before. We have
an isomorphismT(X x G)/G TX x 9 given by [(x, 1, g, 1)] ‘-~ (x, 1, u) where
v = jg~

1.We can checkthat this is well defined,showingthat we do not really

needa connectionto establishan isomorphismas before,oncewe havechosena
trivialization. Since L is an invariantLagrangian,it inducesa <<reduced>> Lagran-
gian on TX x g. This is exactly the situation consideredin CendraandMarsden
[1987]. Then we can introduce Clebschvariablesaswe did in that paper.Thus

we getan alternativeapproachto the questionof dividing by thesymmetry of the
system, which does not involve a connection. The possibility of this double
approachto a given systemwith symmetry has a cotangentcounterpart(see
Montgomery[1986]).

5. YANG-MILLS SPACES

We now describethe motionof a particleina Yang-Mills field as anillustration
of the ideaspreviously discussedabout variational principles in principal fiber

bundles.The configuration spacefor a particle moving in a Yang-Mills field F
is a manifold B, the basespaceof a principal fiber bundle ir : P -÷ B, calledthe
gaugeconfigurationspaceand F is the curvatureof a connectionA on P. The

Lagrangianis the kinetic energy Lagrangiancorrespondingto a metric K on the
total spaceP. This metric is constructedby glueingtogetheraRiemannianmetric

g on the basespaceB anda bi-invariant metricx on the group manifoldG using
theconnectionA. The metric K is definedby theformula
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K,,(~,c~)= g,1(~)(T~1rCñ),T,,7r(4))+ x(A(~3), A(~)).

for every pair of tangentvectors~5,~ E T~P.The projectionof the geodesic

motion on P onto B with respectto the metric K, givesthe solution to Wong’s

equations(seeMontgomery[1984]). This Kaluza-Kleinapproachwas first devised

in Kerner 11968] but its canonical counterpartwas not fully understooduntil
very recently (Sternberg[1977], Weinstein [1978], Montgomery [1984]). The

following paragraphprovidesa brief account of the Hamiltonian descriptionof
thetheory.

The kinetic energyLagrangian

L(p,~)=—K~(~)

can be used to identify TP with T*P. The Hamiotnian induced on T*P in this

way will be denotedby H, and is given by

J1(p,a) = — K~’(a,a)
2”

for everycx E T,,*P. Hence<<b>> standsfor the operationof loweringindices. This
Hamiltonian is obviously G-invariant with respectto thecotangentlifting of the

action of the GaugegroupG. Using the symplecticreduction theoremwe get a

family of reducedHamiltonian systems((T*P),~,~ Hi,) where (T*P)A~,denotes
thereducedspaceobtainedby taking the quotientof thelevel set of the momen-

tum mapping J : T*P ..+ g~by G,,,, the isotropygroupof the coadjoint action

correspondingto p E g~.Thesespacesare the universalrepresentationof the

phase spaceof the system(Weinstein [1978]). The connectionA allows us to

identify (T*P)~with the spaceP# XG O,,, whereP# denotesthe pull backof P
alongthe canonicalprojection r~: T*B -+ B and is the coadjoint orbit of G

throughp E g~.The symplecticstructureon P# XG 0,, wasdescribedin Sternberg

[1977] and it is just the projection of P# XG 0,, of the closed 2-form =

= w + + d(J,A) definedon ~ XG 0,,, w is the presymplecticform onP#

obtained by pulling-back the standardorbit symplectic structure on 0,, and

= (J, A) is the couping 1-form on P# x 0,,. This form is projectableand
inducesthe symplecticstructuresi,,. The differencebetweenH,, andthe Hamil-
tonianis a Casimir on g~that doesnot affect theequationsof motion.

If instead of doing the reduction by the groupG in the Hamiltonian forma-

lism we tried naively to reducethe Lagrangiansystem given by the metric K we

would getthe Lagrangian

L’(x, 1, v) = — g~(1,1) + — x(v,u)
2 2



VARIATIONAL PRINCIPLES ON PRINCIPAL FIBER BUNDLES, ETC. 205

where (x, 1, u) denoteslocal coordinatesin the bundle TPG TX x g, where
X x G is a trivialization of P as we saw in §4. The naivevariational principle,

which allows arbitrary variationsof curvesx andv, doesnot providethe correct
equationsof motion. We could say that reductionandvariational equationsdo

not commutein a trivial way. However,we can write equationsof motion as we
have explained before, according to Remark I at the endof §4. Identifying
vectors and covectorsvia the index lowering operation <<ii>> with respectto the

metricsgonB andx on G, weget

aL’
—

au

= x(u, ~Z’(x,1, .))

1~+ A ‘(x, 1)13 = 0.

For the spaceof Clebschpotentialswe haveseveralchoices,for exampleM = G,
or M avectorspace,as we haveexplainedbefore.(SeeBalachandranet. al. [1985]
for a descriptionof this systemalongtheselines).
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